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Abstract

We discuss the complexity of evaluating certain collections of monic multilinear polynomials using
operations in {×, +}. The functions we consider, which are defined on paths in directed acyclic graphs
(DAGs), represent derivative computations that are based on the chain rule and have direct applications
in high-performance scientific computing. Our main results concern functions derived from single-source,
single-sink DAGs whose maximal paths all have length three. We derive tight, exact lower bounds for
the numbers of multiplications, additions, and total arithmetic operations needed. Moreover, we show
that, given such a DAG, an arithmetic circuit (or straight-line program) of minimum size that evaluates
J (G) can be constructed in polynomial time. In contrast, we show the (perhaps surprising) result
that the problem of finding a circuit of minimum size for a given DAG becomes NP-hard, even for the
restricted class of DAGs considered in this paper, when some subset of the arcs may be labeled with the
multiplicative identity 1 rather than an indeterminate.

1 Introduction

Let G be a finite directed acyclic graph (DAG) with sources s1, . . . , sñ and sinks t1, . . . , tm̃. When the arcs
(u, v) ∈ A(G) are labeled with indeterminates xuv from a set X, the structural derivative J (G) of G is a
matrix defined for all i ∈ {1, . . . , ñ}, j ∈ {1, . . . , m̃} as

Jij(G) =
∑

P∈[si tj ]

∏
(u,v)∈P

xuv,

where [si  tj ] denotes the set of all paths from source si to sink tj in G. We assume that the indeterminates
labeling the arcs are algebraically independent and that no two edges are labeled with the same indeterminate.
We are interested in the exact complexity of evaluating J (G) using operations in {×,+}.

Our study of the structural derivative function is motivated by applications in the field of automatic (or
algorithmic) differentiation (AD) [7], a technique for obtaining numerical derivatives that is used widely in
computational science and engineering. In AD, the chain rule from calculus is used to obtain derivatives
of a function F̃ : Rñ → Rm̃ that is given in the form of an evaluation procedure, such as a straight-line
program in an imperative programming language. From such a program, we construct the computational
graph G, a DAG that describes the way in which the outputs (sinks) are computed from the inputs (sources)
as compositions of arbitrary nonlinear functions. When the arcs (u, v) are labeled with indeterminates
corresponding to the local partial derivatives ∂v

∂u of these functions, a classic result (apparently first due to
Bauer [1]) states that the structural derivative function computes the Jacobian matrix of F̃ . Evaluating J (G)
then amounts to accumulating each global partial derivative Jij(G) = ∂tj

∂si
from the local partial derivatives.

In the context of AD, the use of cancellations is considered undesirable for numerical reasons, and we
therefore forbid division and subtraction. From an algebraic perspective, then, we work in the semiring
〈R,×,+, 0, 1〉, which does not have additive inverses. In Section 4, we formalize the computational model
that has been implicitly used for accumulation procedures in the literature. We consider the computation of
J (G) by an accumulation circuit, which is a certain type of monotone arithmetic circuit that does not use
constants from the underlying field.
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Results. In Section 5, we present the first exact lower bound on the complexity of J (G) for a nontrivial
class of graphs. Our bound relates the multiplicative complexity of J (G) to the vertex cover number of an
associated undirected bipartite graph. A tight upper bound is given in Section 6 along with a polynomial-
time algorithm that, given a graph G from this class, produces an optimal accumulation circuit. We also give
complete characterizations of the additive and total complexity of J (G) for the graphs that we consider.

The fact that our algorithm runs in polynomial time is to be contrasted with the following fact. The
general problem of determining the minimum number of arithmetic operations (or just multiplications)
required to evaluate J (G) for a given graph G has been conjectured for decades to be NP-hard [6]. Our
lower bound represents a step toward resolving the complexity of this circuit minimization problem.

In Section 7, we consider a slight generalization of this problem in which a subset of the arcs in G may
be labeled with the multiplicative unit 1. We show that the problem then immediately becomes NP-hard,
even for DAGs that have the same structure as those addressed in Sections 5 and 6.

2 Background and Motivation

Suppose we are given a program for a function F̃ : x̃ 7→ ỹ and asked to produce an augmented program
for F̃ that can compute the value of not only ỹ but also some derivative object related to F̃ (such as the
Jacobian matrix) at a particular argument x̃0. Specialized compilers that implement AD techniques—such
as Tapenade [8] and OpenAD [25]—accomplish this task in the following way. The key is that, in AD, we
leverage the chain rule to differentiate an algorithm for F̃ , rather than F̃ itself.

Evaluation procedures and linearization. We assume F̃ : Rñ 7→ Rm̃ is a vector function given in the
form of an evaluation procedure such as a straight-line program in which temporary values are computed
and assigned to variables. The values for the first ñ variables are assumed to be taken from the input vector
x̃ ∈ Rñ, and the values of the output vector ỹ ∈ Rm̃ are assumed to be extracted from the last m̃ variables.
Each program variable vj is assigned the value of an arbitary nonlinear function ϕj , which takes some
subset of the previously computed variables as arguments. These direct dependencies among the variables
induce the DAG G, where an arc (vi, vj) ∈ A(G) indicates that variable vj depends directly on variable vi
indicating vj = ϕj(. . . , vi, . . .). The functions ϕj can be either built-in intrinsic functions (such as sin or exp)
or arbitrary nonlinear functions that may even be implemented in separate subroutines. We require only
that an explicit linearization procedure can be created for evaluating the local partial derivatives ∂ϕj

∂vi
. This

may be produced either by an automatic process (such as ∂sin(v)
∂v = cos(v)) or by a hand-coded subroutine.

Note that both the variables vi and the local partials ∂vj

∂vi
then take values in R when F̃ is evaluated at a

particular argument x̃0 ∈ Rñ. Linearization is a fundamental part of any AD compiler; we therefore assume
that the linearization process has already been performed and that the arcs A(G) have been labeled with
indeterminates corresponding to the local partial derivatives. For our purposes, the values at the vertices in
G are irrelevant and will be ignored.

Derivative accumulation. What remains is to apply the chain rule, which entails creating an accumu-
lation procedure that will be appended to the evaluation and linearization procedures. An accumulation
procedure describes how the chain rule will be applied to evaluate J (G), and may be thought of either as
a straight-line program or as an arithmetic circuit. In either case, J (G) is considered to be computed over
〈R,×,+, 0, 1〉.
Definition 1 (accumulation complexity). Let G be a DAG such that the arcs A(G) are labeled with indeter-
minants from a set X. The accumulation complexity ACC(G) of G is the minimum number of arithmetic
operations required to compute all the entries of J (G) over X using only operations in {×,+}. The multi-
plicative accumulation complexity ACC×(G) and the additive accumulation complexity ACC+(G) are the
minimum numbers of multiplications and additions required, respectively.

Multiplications are generally considered to be significantly more expensive than additions; hence, ACC×(G)
is the primary complexity measure of interest. Note that the number of terms in any of the polynomials
that J (G) comprises could be exponential in the number of arcs in G. Nevertheless, J (G) can always
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be evaluated at a cost of only polynomially many multiplications and additions. The forward and reverse
modes of AD are often used in practice. The forward mode yields rows of J (G) at a cost of roughly |A(G)|
multiplications each (this cost is indepenent of m̃), while the reverse mode, which works symmetrically, yields
columns of J (G) at a cost of roughly |A(G)| multiplications each (independent of ñ). Combining these two
approaches, we get ACC×(G) ≤ |A(G)| ∗min(ñ, m̃).

Motivation. Large-scale numerical simulations are often written in imperative programming laguages
such as C or Fortran. Such programs usually involve control flow structures such as branches, loops, and
subroutine calls. In this context, F̃ typically represents not the entire function of interest, but rather a
relatively small small block of code that may be contained in a subroutine that is called within a deeply
nested loop structure. As a result, the code for F̃ (as well as the accumulation code) will be evaluated many
times at different arguments for a single run of the larger program. In this way, saving even a small number
of multiplication operations in the accumulation process has the potential to significantly reduce the overall
runtime of the resulting program.

3 k-Homogeneous DAGs and Matrix Multiplication

Definition 2 (k-homogeneous DAG). A DAG is k-homogeneous if every path from a source to a sink has
length exactly k. (In other words, each maximal path consists of exactly k edges.)

When G is a k-homogeneous DAG, the structural derivative of G corresponds to a chained product
of k sparse matrices in the following way, where a matrix is sparse if it has entries from X ∪ {0}. This
correspondence has also been observed by Vassilevska [26] and earlier by Mahr [13], Yuster and Zwick [27],
and others. Let V (G) be partitioned into V 0, . . . , V k such that the vertices in every V ` = {v`1, . . . , v`n`

} are at
distance ` from the sources. Every arc then has the form (v`−1

i , v`j); we denote the associated indeterminate
by x`ij . We then have J (G) = X1X2 · · ·Xk, where each X` is a (n`−1 × n`) matrix whose entry in the ith
row and jth column is x`ij if (v`−1

i , v`j) ∈ A(G) and 0 otherwise. Each vertex v`i then corresponds to the ith
column of matrix X` and the ith row of matrix X`+1.We will refer interchangeably to X` both as a subset of
X and as a matrix; The meaning will be obvious from the context. Let |X`| denote the number of elements
in the set X` as well as the number of nonzero entries in the matrix X`. For all ` ∈ {1, . . . , k}, let G` denote
the undirected bipartite graph defined by

V
(
G`
)

= V `−1 ∪ V `,
E
(
G`
)

=
{{v`−1

i , v`j} | (v`−1
i , v`j) ∈ A(G)

}
.
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[
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11 x2
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21 x2
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]
︸ ︷︷ ︸

X2

Figure 1: A 2-homogeneous DAG where J (G) = X1X2.
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3.1 Tight lower bounds for matrix multiplication

There are a few known results on the monotone complexity of chained matrix products; all such results
suggest that the schoolbook method for matrix multiplication is optimal (and unique up to isomorphism).

Theorem 1 ([10]). (k−1)n3 multiplications are necessary and sufficient to evaluate the product A1A2 · · ·Ak
of k dense n× n matrices over 〈R,×,+, 0, 1〉.

For k = 2, Theorem 1 is implied by the following stronger result.

Theorem 2 ([21, 20, 15, 14]). If A is an n0 × n1 matrix and B is an n1 × n2 matrix, then n0n1n2

multiplications and n0(n1− 1)n2 additions are necessary and sufficient to evaluate AB over any semiring of
characteristic zero.

Corollary 3.

(i) If G is a 2-homogeneous DAG such that both G1 and G2 are complete bipartite graphs, then ACC×(G) =
n0n1n2 and ACC+(G) = n0(n1 − 1)n2;

(ii) If G is a k-homogeneous DAG such that n0 = · · · = nk = n and G1, . . . , Gk are complete bipartite
graphs, then ACC×(G) = (k − 1)n3.

3.2 k-homogenous st-DAGs

Definition 3 (st-DAG). An st-DAG is a DAG with unique source s and unique sink t.

In this paper, we focus on 3-homogeneous st-DAGs G, for which J (G) = X1X2X3, where X1 is a dense
n1-dimensional row vector, X3 is a dense n2-dimensional column vector, and X2 is a sparse (n1 × n2)-
dimensional matrix. We show that every accumulation circuit for such a DAG G uses ACC+(G) = |X2|−1
additions and that ACC×(G) is equal to |X2|+ τ

(
G2
)
, where τ

(
G2
)

is the vertex covering number of G2.
the undirected bipartite graph with adjacency matrix X2. The forward mode is the same as performing the
product as

(
X1X2

)
X3, whereas the reverse mode performs X1

(
X2X3

)
. Our result makes it easy to con-

struct examples for which evaluating J (G) according to neither bracketing is optimal, thereby demonstrating
the utility of exploiting both associativity and distributivity. On the other hand, we also demonstrate that
every accumulation procedure for J (G) can be transformed into one that is noncommutative with no effect
on the size; this implies that commutativity is powerless for 3-homogenous st-DAGs.
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︸ ︷︷ ︸
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︸ ︷︷ ︸
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Figure 2: A 3-homogeneous st-DAG. J (G) = X1X2X3.
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4 Computational Model

In this section, we define the computational model that we will use in proving our bounds. We work in the
semiring 〈R,×,+, 0, 1〉, which has the following properties:

• associativity of × and +;
• commutativity of × and +;
• distributivity of × over +;
• additive identity/multiplicative annihilator 0; and
• multiplicative identity 1.

In our case, the operations × and + are just the usual multiplication and addition of real numbers. Note
that we do not assume the existence of additive inverses. As a consequence, we assume that no cancellations
occur in our computation. To avoid confusion, we use tree terminology (node, parent, child, ancestor, etc.)
for circuits, reserving digraph terms (vertex, arc, inarc, etc.) for G itself.

4.1 Arithmetic circuits

Let F be a field and X be a set of indeterminates. An arithmetic circuit Φ over X and F is a directed acyclic
graph whose nodes are either inputs with zero children or gates with exactly two children The inputs take
labels from X ∪F. Every gate is labeled with an operation in {×,+} and computes a polynomial in the ring
F[X] in the natural way: gates labeled × compute the product of their children; gates labeled + compute
the sum of their children. The size of Φ, denoted |Φ|, is the number of gates; |Φ|× and |Φ|+ denote the
numbers of product and sum gates, respectively. For a node α ∈ Φ, Xα denotes the set of inputs in Φ that
have α as an ancestor, and mon(α) denotes the set of monomials of the polynomial computed at α.

Definition 4 (monotone polynomial/circuit). A polynomial is monotone if the coefficient of every monomial
is non-negative. An arithmetic circuit is monotone if every field element that occurs as a label on an input
is positive.

Monotone circuits can compute only monotone functions and are exactly those arithmetic circuits that
don’t use any negative constants from the underlying field. The following observation captures the intuition
that nothing is destroyed in monotone computations.

Observation 4.1. If α and ζ are nodes in a monotone arithmetic circuit such that γ is an ancestor of α,
then for every A ∈ mon(α) there exists some Z ∈ mon(ζ) such that A ⊆ Z.

Definition 5 (multilinear polynomial/circuit [19]). A polynomial is multilinear if, in every monomial, the
degree of every indeterminate is 1. An arithmetic circuit is multilinear if the polynomial computed at every
node is multilinear.

The following property is also known as syntactic multilinearity [22].

Definition 6 (multiplicatively disjoint [11]). An arithmetic circuit is multiplicatively disjoint if Xα∩Xβ = ∅
for every product gate ρ = α× β.

Observation 4.2 ([19]). Every monotone arithmetic circuit for a multilinear polynomial is multiplicatively
disjoint.

Definition 7 (monic polynomial/circuit). A polynomial is monic if the coefficient in every monomial is
either 0 or 1. A monic arithmetic circuit computes a monic polynomial at every node.

Every monic arithmetic circuit is also monotone. Since our operations are commutative and a monic
multilinear polynomial is uniquely determined by the set of sets representation of its monomials, we don’t
distinguish between a monomial and the set consisting of those indeterminates that occur in it.

Definition 8 (additively disjoint). An arithmetic circuit Φ is additively disjoint if mon(α) ∩mon(β) = ∅
for every sum gate σ = α+ β.

Observation 4.3. Every monic arithmetic circuit is additively disjoint.
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4.2 Accumulation circuits

According to the framework above, we can now give a formal description of the properties of accumulation
circuits.

Definition 9 (accumulation circuit). An arithmetic circuit is an accumulation circuit if every input is
labeled with an indeterminate (and not a constant from the underlying field).

Like arithmetic circuits, each gate in an accumulation circuit computes a polynomial from the ring F[X].

Observation 4.4. Every accumulation circuit for a collection of monic polynomials is monic.

x1
11 x1

12 x1
13 x2

11 x2
21 x2

22 x2
32 x2

31 x2
33 x3

11 x3
21 x3

31

X1 X2 X3

×λ11 × λ21 ×λ22 × λ32 ×λ31 × λ33

+ + +

×υ11 = υ21 × υ22 = υ32 × υ31 = υ33

+

+φ

Φ

v1
1 v2

1

v1
2 v2

2

v1
3 v2

3

G2

Figure 3: An accumulation circuit for the DAG G from the example shown in Figure 2. G2 is shown with
vertex cover H = {v2

2 , v
1
3 , v

2
1} indicated by squares.

Any accumulation circuit for J (G) must therefore be both monic and multilinear. Since we allow com-
mutativity, each monomial is considered as a set of indeterminates. We now prove some elementary results
concerning accumulation circuits that will be useful later. Let Φ be an accumulation circuit that computes
a collection of monic multilinear polynomials.

Definition 10 (ζ-unique). A monomial A ⊆ X is ζ-unique for a node ζ ∈ Φ if there is exactly one monomial
Z ∈ mon(ζ) such that A ⊆ Z.

Proposition 4.5. Let α, ζ be nodes in Φ such that α is a descendant of ζ. If there is some A ∈ mon(α)
such that A is ζ-unique, then there is a unique path in Φ from α to ζ.

Proof. Since Φ is multiplicatively disjoint, two distinct paths in Φ from α to ζ cannot meet at a product gate.
Suppose two such paths meet at a sum gate σ. It follows that there exist distinct monomials S1, S2 ∈ mon(σ)
such that A ⊆ S1 and A ⊆ S2. Since σ must be a descendant of ζ, Observation 4.1 implies that there are
distinct Z1, Z2 ∈ mon(ζ) such that A ⊆ S1 ⊆ Z1 and A ⊆ S2 ⊆ Z2, a contradiction.

Lemma 4.6. Let ρ ∈ Φ be a product gate with children α and β. If there is some A ∈ mon(α) such that A
is ζ-unique, then |mon(β)| = 1.

Proof. If there exist distinct B1, B2 ∈ mon(β), then A ∪ B1, A ∪ B2 ∈ mon(ρ), which contradicts the fact
that A is ζ-unique.

5 The Lower Bound

Throughout this section, Φ will denote an accumulation circuit that computes J (G) for a 3-homogeneous
st-DAG G. We partition V (G) = V 0 ∪ V 1 ∪ V 2 ∪ V 3 and A(G) = X1 ∪X2 ∪X3 as in Section 3.
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5.1 Additive complexity

For a node α ∈ Φ, define X2
α ≡ Xα ∩X2.

Proposition 5.1. If σ is a sum gate in Φ with children α and β, then X2
α 6= ∅ and X2

β 6= ∅.
Proof. Suppose the claim is false, and assume without loss of generality that X2

α = ∅. Since mon(σ) =
mon(α)∪mon(β), it follows that there exists some S ∈ mon(σ) such that S ∩X2 = ∅. Since every monomial
in mon(φ) has a nonempty intersection with X2, there must exist a product gate ρ in Φ such that (1) ρ is an
ancestor of σ; (2) ρ has a children η, ω such that η is an ancestor of σ and ω is not; and (3) X2

ω 6= ∅. Since
every x ∈ X2

ω is ω-unique, it follows from Lemma 4.6 that |mon(η)| = 1, which contradicts the fact that σ
is a descendant of η, as |mon(σ)| = 1.

Lemma 5.2. ACC+(G) = |X2|−1. Moreover, |Φ|+ = |X2|−1 for every accumulation circuit Φ computing
J (G).

Proof. We construct from Φ a binary tree T+ whose leaves correspond to the inputs in X2 and whose internal
nodes correspond to the sum gates in Φ. Consider the circuit T (2) obtained by removing all nodes α ∈ Φ for
which X2

α = ∅. Since every node in T (2) computes a monomial that is φ-unique, T (2) is a tree with leaf set
X2. By Proposition 5.1, every sum gate σ in Φ in included in T (2), as are both children of σ. Now let ρ be
an arbitrary product gate in T (2). Since no monomial in mon(φ) contains more than one input from X2, it
follows that at most one child α of ρ is contained in T (2), so ρ has exactly one parent and exactly one child
in T (2). Let T+ be the tree obtained from T (2) by repeatedly removing every product gate ρ, followed by
connecting the child of ρ directly to the parent. T+ is a (full) binary tree whose internal nodes are exactly
the sum gates in Φ and whose leaves are exactly those inputs from X2. Since every full binary tree with k
leaves has exactly k − 1 internal nodes, our proof is complete.

5.2 Multiplicative complexity

We begin by defining parse trees, which chart the production of particular monomials in mon(φ).

Definition 11 (parse tree [10]). A subcircuit T of Φ is a parse tree of Φ if it satisfies the following conditions:
(i) T contains the (unique) output of Φ.
(ii) If T contains a sum gate σ, then T contains exactly one of the children of σ.

(iii) If T contains a product gate ρ, then T contains both of the children of ρ.
(iv) No proper subtree of T satisfies (i)-(iii).

Let PT(Φ) denote the set of all parse trees of Φ. Every monomial of mon(φ) is of the form x1
1ix

2
ijx

3
j1, so

we may denote the corresponding parse tree by Tij . In particular, all monomials in J (G) consist of exactly
three variables when G is a 3-homogeneous st-DAG, and so each parse tree Tij will contain exactly two
product gates λij and υij such that υij is an ancestor of λij .

The three types (I, II, and III) of parse tree for monomials consisting of three indeterminates are shown
in Figure 4. Note that every product gate is either υij or λij for some i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}.

We establish a canonical form for Φ in the following lemma.

Lemma 5.3. For every accumulation circuit Φ for G, there exists an accumulation circuit Φ′ for G such
that |Φ′| = |Φ| and x2

ij ∈ Xλij for all Tij ∈ PT(Φ′).

Proof. We give an explicit construction for constructing the desired circuit Φ′ from an arbitrary accumulation
circuit Φ.

Let Tij be any parse tree in PT(Φ) such that x2
ij /∈ Xλij

. Let α, β be the children of υij such that λij
is a descendant of α and x2

ij is a descendant of β. Now observe that there must exist L ∈ mon(λij) such
that x1

1i, x
3
j1 ∈ L. It follows that L is φ-unique, and Lemma 4.6 implies |mon(β)| = 1, from which we may

conclude that β = x2
ij . As {x2

ij} is φ-unique, we may apply similar reasoning to conclude that α = λij and
mon(λij) = {x1

1i, x
3
j1}. We now have that x1

i , x
3
j1 are the children of λij and λij , x

2
ij are the children of υij .

Since λij is φ-unique, υij is the sole parent of λij . It follows that we may transform Φ in the following way
without affecting the polynomial that it computes: (1) create a new product gate λij ′ with children x1

1i, x
2
ij ;
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x1
1i x2

ij x3
j1

×λij

×υij

Type I
x1

1i x2
ij x3

j1

× λij

× υij

Type II
x1

1i x2
ij x3

j1

×λij

× υij

Type III

Figure 4: The parse tree Tij ∈ PT(Φ) corresponding to monomial x1
1ix

2
ijx

3
j1 ∈ mon(φ) must be one of

the three types shown here. A dashed edge indicates that one or more sum gates may be present on the
path between the nodes indicated. In Lemma 5.3, we show that there is always an accumulation circuit of
minimum size such that no parse tree is of type III.

(2) create a new product gate υij ′ with children λij
′, x3

j1; (3) connect υij ′ to the unique parent of υij ; and
(4) remove λij and υij from Φ.

We may continue with this process to obtain Φ′ as desired. Since, at each step, the number of product
gates (and, in fact, the total number of gates) does not change, we have |Φ′| = |Φ|. This completes the
proof.

Theorem 4. Commutativity has no power in this setting.

Proof. Follows from the condition that Lemma 5.3 places on the gates λij .

x1
1i x2

ij x3
j1

×λij

× υij

x1
1i x2

ij x3
j1

×λij

×υij

Figure 5: Every parse tree of type III (as on the left) can be transformed in this fashion without affecting
the polynomial computed by the circuit.

A vertex cover for an undirected graph G is a set C ⊆ V (G) of vertices such that every edge in E(G)
has at least one endpoint in C. The vertex cover number τ(G) of G is the smallest integer k for which there
exists a vertex cover of size k for G.

Lemma 5.4. If G is a 3-homogeneous st-DAG, then ACC×(G) ≥ τ(G2
)
.

Proof. By Lemma 5.3, we can assume without loss of generality that Φ is an accumulation circuit for G in
which x2

ij ∈ Xλij
for all Tij ∈ PT(Φ). Observe that the product gates in Φ can be partitioned into Λ and Υ,

where Λ = {λij | Tij ∈ PT(Φ)} and Υ = {υij | Tij ∈ PT(Φ)} (note that Λ and Υ are disjoint). Since each
λij ∈ Λ has x2

ij as a child, we have |Λ| = |X2|, from which |Υ| = k follows.
We now show how to use Υ to construct a vertex cover of size k for G2. Since every parse tree Tij is of

type I or II, every υij ∈ Υ has either x1
1i or x3

j1 as a child. We can thus construct the desired vertex cover
of G2 by iterating over the parse trees Tij ∈ PT(Φ), adding v1

i if x1
1i is a child of υij , adding v2

j otherwise.
The constructed set of vertices constitutes a vertex cover, since for every edge {v1

i , v
2
j } in G2 either v1

i or v2
j

is added. Furthermore, since Υ consists of exactly k product gates, the constructed vertex cover will be of
size k. This completes the proof of the lemma.
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6 The Upper Bound

Lemma 6.1. If G is a 3-homogeneous st-DAG, then ACC×(G) ≤ |X2|+ τ
(
G2
)
.

Proof. Let H ⊆ V 1 ∪ V 2 be any vertex cover of G2 that is minimal, meaning that no proper subset of H is
also vertex cover. Our proof proceeds by induction on |H|.

Basis (|H| = 1). Suppose |H| = 1, and assume without loss of generality that H = {v1
1}. It follows that

V 1 = {v1
1} and, therefore,

J (G) = x1
11x

2
11x

3
11 + x1

11x
2
12x

3
21 + · · ·+ x1

11x
2
1n2

x3
n21

= x1
11

(
x2

11x
3
11 + x2

12x
3
21 + · · ·+ x2

1n2
x3
n21

)
.

We construct an accumulation circuit Φ with output φ in the natural way:

(i) Create product gates λ1j = x2
1j × x3

j1 for j = 1, . . . , n2.

(ii) Create |X2| − 1 sum gates to compute λ+
1 =

∑
j λ1j .

(iii) Create product gate φ = x1
11 × λ+

1 .

We then have that φ computes J (G), and |Φ|× = |X2|+ 1, as desired.

...

x1
11

x2
11

x2
12

x2
1n2

x3
11

x3
21

x3
n21

G

x1
11 x2

11 x2
12 · · · x2

1n2
x3

11 x3
21 · · · x3

n21

× × · · · ×
+

+

×φ

Φ

Figure 6: Basis step in the proof of Lemma 6.1.

Inductive step (|H| ≥ 2). Now suppose |H ≥ 2|, and assume without loss of generality thatH contains the
vertex v1

1 and that the successors of v1
1 in G are v2

1 , . . . , v
2
p where p ≤ |X2|. Define a new DAG G̃ by removing

{v1
i } from G along with all incident arcs, where we can assume the resulting X̃1 ≡ X1 \ {x1

11} 6= ∅ and
X̃2 ≡ X2\{x2

11, . . . , x
2
1n2
}. Any v2

j ∈ V 2 left without any inarcs is also removed (along with incident arcs), so
that G̃ is a 3-homogeneous st-DAG. Since no such v2

j could have been part of a minimal vertex cover, we have
that H̃ ≡ H \{v1

i } is a vertex cover of G̃2. Suppose (inductive hypothesis) ACC×(G̃) ≤ |X̃2|+|H̃|, and let Φ̃
be an accumulation circuit whose output φ̃ computes J (G̃) such that |Φ̃|× = |X̃2|+ |H̃| = |X2|−p+ |H|−1.
Note that J (G̃) is exactly J (G) without any of the monomials containing x1

11. By applying the same
construction as in the basis step, we can construct an accumulation circuit Φ̂ with output φ̂ that computes
the missing monomials

J (Ĝ) = x1
11x

2
11x

3
11 + x1

11x
2
12x

3
21 + · · ·+ x1

11x
2
1px

3
p1

such that |Φ̂|× = p + 1. Now create a new sum gate φ = φ̂ + φ̃ to act as the output of an accumulation
circuit Φ. Observe that Φ computes J (G) and |Φ|× = |X2|+ |H|, implying that ACC×(G) ≤ |X2|+ |H|.

Since any vertex cover H of minimum size must also be minimal, we have that ACC×(G) ≤ |X2|+τ(G2
)
,

as desired.

Theorem 5. The following hold for every 3-homogeneous st-DAG G.

(i) ACC×(G) = |X2|+ τ
(
G2
)
.
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(ii) ACC+(G) = |X2| − 1.

(iii) ACC(G) = 2|X2|+ τ
(
G2
)− 1.

Proof. Follows from Lemma 5.2, Lemma 5.4, and Lemma 6.1.

7 The Optimal Structural Derivative Accumulation Problem

Theorem 6. There exists a polynomial-time algorithm that, given a DAG G, constructs an accumulation
circuit Φ computing J (G) such that |Φ|× = ACC×(J (G)) and |Φ+| = ACC+(J (G)).

Proof. The proof for the upper bound presented in Lemma 6.1 describes a constructive algorithm for ob-
taining Φ from a vertex cover H. The described procedure can be made to run in polynomial time; choose
an arbitrary cover vertex at each step. Since an optimal vertex cover of a bipartite graph can also be found
in polynomial time, it follows that we can construct the desired accumulation circuit Φ in the same time
bound.

In general, we may be given any DAG G as input. We are especially interested, then, in whether there
is an algorithm that, given a DAG G, can produce an accumulation circuit that evaluates J (G) by using
only ACC×(J (G)) multiplications. The corresponding decision problem, formalized below as a circuit min-
imization problem, has been conjectured for decades to be NP-hard.

Optimal Structural Derivative Accumulation
Instance: DAG G, integer K.
Question: Is ACC×(J (G)) ≤ K?

A number of heuristics have been proposed and implemented for this problem [6, 16, 17]; many work by
successively performing local transformations to G (“eliminations”), eventually reducing G to a (directed)
bipartite graph with arcs corresponding to the nonzero entries of J (G). An important property that these
techniques share is that they do not exploit the commutativity of the underlying field R.

Naumann [18] considers a variant of Optimal Structural Derivative Accumulation in which two
or more arcs in G may be labeled with the same indeterminate. Note that, when this is permitted, any
collection of polynomials can be expressed as J (G) for some DAG G. This is accomplished by creating a
collection of edge-disjoint paths, one for each monomial. Naumann is thus able to show that this variant
is NP-hard1 via a reduction from ensemble computation [2]. The Optimal Structural Derivative
Accumulation problem concerns the complexity that arises from the structure of the chain rule (as manifest
in G). In the remainder of this section, we consider a different type of generalization—one that allows us
to relate the complexity of J (G) to that of another function representing a multilinear polynomial: bilinear
forms.

7.1 Unit arcs and bilinear forms

In this section, we show that the following variant of Optimal Structural Derivative Accumulation
is NP-hard. Instead of labeling every arc from A(G) with its own indeterminate from X, we label some
of the arcs with indeterminates and the rest with the multiplicative identity 1. We still assume that there
are no algebraic dependences among the indeterminates that label edges, so the structure of G is somewhat
preserved in J (G). Note that any DAG can be made k-homogeneous for some k polynomial in |A(G)| when
unit arcs are permitted. Griewank and Naumann [5] implicitly use this fact in formulating a heuristic for
the Optimal Structural Derivative Accumulation problem, where J (G) is represented as a chained
product of sparse matrices with entries from X∪{0, 1}, and a variant of the dynamic programming approach
to chained matrix bracketing is applied. However, we note that when a k-homogeneous DAG G contains
unit arcs, the resulting collection of polynomials is no longer necessarily k-homogeneous. Indeed, in the next
section we discuss 3-homogeneous DAGs G for which J (G) happens to be a 2-homogeneous polynomial.

1 Though Naumann asserts that Optimal Structural Derivative Accumulation is in NP, this has not been shown.
Observe that the number of paths in a DAG can be exponential in the number of arcs, in which case there will be an exponential
number of terms in the polynomials composing J (G). For this problem to be in NP, we must be able to check in polynomial
time whether an accumulation circuit Φ computes J (G) for a given DAG G; it is not immediately clear that this is possible.
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Bilinear forms. Let a and b be vectors of indeterminates of dimension p and q, respectively, and let
M ∈ Fp×q be a matrix of field elements. A bilinear form f over a and b is defined as the product f = a>Mb.
Gonzalez and JáJá [3] studied the complexity of monic bilinear forms (those for which M ∈ {0, 1}p×q). In
fact, they considered only computations in the polynomial semiring {0, 1}[X], which corresponds exactly to
our model of accumulation circuits. The biclique cover number of an undirected graph G is the smallest
number k of complete bipartite graphs into which the edge set E(G) can be partitioned. The following result
was established by a reduction from the biclique cover problem on bipartite graphs, which is shown to be
NP-complete earlier in the same paper.

Theorem 7 ([3]). Given a bilinear form f over {0, 1}[X] and a positive integer K, the problem of determining
whether ACC×(f) ≤ K is NP-complete.

Given a bilinear form f , a DAG G for which J (G) = f can be constructed in the manner laid out
in Section 3. Such a DAG will be a 3-homogeneous st-DAG, where X2 is a fixed 0-1 matrix rather than
consisting of indeterminates.

Corollary 8. The variant of Optimal Structural Derivative Accumulation in which a subset of the
arcs may be labeled with the multiplicative unit 1 is NP-hard and remains so even when G is a 3-homogeneous
st-DAG.

Note that adding unit arcs can also change dramatically the types of operations that an accumulation
procedure for J (G) may consist of. For example, Figure 7 demonstrates the utility of operations such as(

x1
11 + x1

12

) (
x3

41 + x3
51

)
,

which are not useful when J (G) is considered for a DAG G without unit arcs.

G



0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1


X2

J (G) = x1
11x

3
41 + x1

11x
3
51 + x1

12x
3
41 + x1

12x
3
51 + x1

13x
3
61 + x1

13x
3
71 + x1

13x
3
81 + x1

14x
3
11 + x1

14x
3
21

+ x1
14x

3
41 + x1

15x
3
31 + x1

15x
3
51 + x1

16x
3
11 + x1

16x
3
61 + x1

17x
3
21 + x1

17x
3
71 + x1

18x
3
31 + x1

18x
3
81

=
(
x1

11 + x1
12

) (
x3

41 + x3
51

)
+ x1

13

(
x3

61 + x3
71 + x3

81

)
+ x1

14

(
x3

11 + x3
21 + x3

41

)
+ x1

15

(
x3

31 + x3
51

)
+ x1

16

(
x3

11 + x3
61

)
+ x1

17

(
x3

21 + x3
71

)
+ x1

18

(
x3

31 + x3
81

)
=

(
x1

11 + x1
12 + x1

14

) (
x3

11 + x3
21 + x3

41

)
+
(
x1

13 + x1
16

) (
x3

11 + x3
61

)
+
(
x1

11 + x1
12 + x1

15

) (
x3

31 + x3
51

)
+
(
x1

13 + x1
17

) (
x3

21 + x3
71

)
+
(
x1

13 + x1
18

) (
x3

23 + x3
81

)− (x1
11 + x1

12 + x1
13

) (
x3

11 + x3
21 + x3

31

)
Figure 7: An example due to Gonzalez and JáJá [3]. Seven multiplications are necessary and sufficient
to evaluate B = X1X2X3 over {0, 1}[X]. This is also an example of an st-DAG for which C×(J (G)) <
ACC×(J (G)) (shown using six multiplications over {−1, 0, 1}[X]).
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Problem Function ⊗ ⊕ idempotent?
Derivative Accumulation R|E| → R ∗ +
#s-t Paths {0, 1}|E| → N ∗ + ×
Shortest s-t Path R|E| → R + min +
s-t Connectivity {0, 1}|E| → {0, 1} ∧ ∨ ×,+

8 Discussion

8.1 The power of commutativity

We saw that exploiting associativity and distributivity were crucial in achieving the tight bound on the
complexity of J (G) for 3-homogeneous st-DAGs. At the same time, Theorem 4 shows that, for this class
of graphs, the complexity of J (G) does not depend on whether the indeterminates commute. Likewise,
commutativity is not used in the monotone circuits for matrix multiplication discussed in Theorem 1 and
Theorem 2, where the schoolbook method is used.

Naumann and Griewank conjecture the following.

Conjecture 1 ([4, 17]). For every DAG G, there exists an optimal accumulation circuit computing J (G)
that does not use commutativity.

In fact, they conjecture something a bit stronger: that the elimination technique known as face elimination
can always be used to obtain an optimal accumulation circuit. Griewank [4] shows that Conjecture 1 is true
for DAGs that are absorption-free, meaning that there is at most one directed path between any two vertices.
Accumulation circuits for such DAGs consist of product gates exclusively.

8.2 Other semirings

Disallowing commutativity can be viewed as a restriction of the algebraic properties of the semiring 〈R,×,+, 0, 1〉
that we consider. At the opposite end of the spectrum lies the Boolean semiring 〈Z2,∧,∨, 0, 1〉, where J (G)
computes the all-source all-sink connectivity function. This semiring is much more general, in the sense
that any monotone arithmetic circuit for J (G) will immediately become a monotone Boolean circuit for
many-source, many-sink connectivity when the operation × is replaced with ∧ and + with ∨. It is striking
that, as Theorem 2 shows, the complexity of dense n × n is exactly the same for such a wide range of
semirings. In general, lower bounds for connectivity translate directly into lower bounds for any ring that
is more restrictive. Likewise, upper bounds on structural derivative accumulation apply to less restrictive
semirings. Iri [9] shows that forward and reverse modes are equivalent to an algorithm in 〈R,min,+, 〉, an
only slightly more general semiring than our own. In this context, J (G) computes many-source, many-sink
shortest paths. This connection is also discussed by Mahr [12, 13], and is considered by Mehlhorn [14] for
general directed graphs (those not necessarily acyclic). In this sense, our algorithms can be viewed as a
preprocessing step for answering a large number of connectivity or shortest path queries, and so forth.

Definition 12 (idempotence). An operation ◦ is idempotent if x ◦ x = x for all x ∈ F.

Examples of idempotent operations include min and max over the field R and ∧ and ∨ over the field Z2.

Observation 8.1. Let Φ be an accumulation circuit over a semiring 〈F,⊗,⊕, 0, 1〉. If ⊗ is idempotent, then
Φ is multilinear.

Observation 8.2. Let Φ be a multilinear accumulation circuit over a semiring 〈F,⊗,⊕, 0, 1〉. If ⊕ is
idempotent, then Φ is monic.

An example of a semiring over R for which both ⊗ and ⊕ are idempotent is 〈F,min,max,−∞,+∞〉. See
Table 8.2 for more examples.

For monotone computations over indeterminates that take 0-1 values [23] the ⊗ operation is idempotent.
In this case, J (G) counts the number of paths.
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8.3 The power of cancellation

This is the only part of the paper where we consider cancellations. We make note here of two small concrete
examples for which results are known that illustrate the utility of cancellations in evaluating J (G). Strassen’s
algorithm [24] for multiplying 2× 2 matrices (see Figure 1) uses only seven multiplications, while eight are
required in the monotone model. (Note that an essential part of this algorithm is that it is noncommutative.)
Gonzalez and JáJá [3] give an example of an 8×8 bilinear form (Figure 7) that requires seven multiplications
over {0, 1}[X] and can be done with six over {−1, 0, 1}[X].
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